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In  this paper time dependent expansions of monatomic gases with spherical 
symmetry are discussed. For the particular case of Maxwellian molecules closed 
expressions for the moments up to second order are obtained in regions of the 
flow where the inviscid solution is no longer valid. These solutions are derived 
in a general form using the particle path function as a parameter. The structure 
of the inviscid solution is such that this simplification can be made. The novelty 
of the present approach is that solutions already derived in previous papers can 
be obtained from the general solution in various limits; both the results for 
steady flow and the expansion of a fixed mass of gas can be derived in this manner. 
Finally, a particular example is constructed in order to illustrate the general 
theory. 

1. Introduction 
In  this paper the unsteady expansion of a monatomic gas into vacuum for 

flows with spherical symmetry is studied from the viewpoint of the kinetic theory 
of gases. The problem of the expansion of such gases has been studied in detail 
recently but attention has hitherto been confined to purely steady or unsteady 
flows. The possibility of an unsteady flow approaching the steady state is con- 
sidered below in general form with the intention of unifying previous theoretical 
approaches to  the problem. 

The steady spherically symmetric problem has been considered by various 
authors (Edwards & Cheng 1966; Freeman 1967; Freeman & Thomas 1969; 
Hamel & Willis 1966). As far as this paper is concerned the work of Freeman 
(1967) is of importance. The techniques developed by him form the basis on 
which the present paper is written, namely, the application of the method of 
matched asymptotic expansions to this type of problem. The theory presented 
below is based to a large extent on the use of particle path co-ordinates. It is 
shown that in this co-ordinate system, the outer zeroth-order solution can be 
treated as though each particle path line were completely independent, a simpli- 
fication exploited previously in the purely unsteady problems discussed by 
Freeman & Grundy (1968) and Grundy & Thomas (1969). In  the present problem 
the steady flow limit is extracted in certain regions of the flow field where the 
asymptotic velocity becomes independent of particle path line. 

Throughout this work the Maxwell molecule collision model is used in order 
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that closed moment equations can be obtained. This is a necessary mathematical 
restriction and corresponds to an inverse fifth power law for the molecular 
interaction field. 

2. The inviscid solution 
The basic gasdynamic problem of the unsteady expansion of a gas into vacuum 

from the viewpoint of continuum thermodynamics has been treated most ex- 
tensively in the literature (Stanyukovitch 1960; Courant & Priedrichs 1948). 
Exact analytical solutions to the inviscid equations for particular symmetries 
and boundary conditions have only been found in a very restricted number of 
cases. First, there is the classical problem of the expansion of a semi-infinite 
mass of a uniform gas into vacuum, the flow field comprising a simple wave and 
and a uniform state. Secondly, there is the plane expansion of a uniform finite 
mass of gas which possesses a simple wave solution, a constant state and an 
interaction region in which there is an analytical solution. A further class of 
exact solutions can be obtained for spherical, cylindrical and plane flows; these 
are self-similar solutions which have specified initial conditions (Thornhill 1958 
and Sedov 1959). 

The existence of these exact solutions has led investigators into attempting 
to find solutions which are usually valid in some asymptotic sense. In  particular 
for expanding flows where density is a decreasing function of time (or space 
co-ordinate), large time (or distance) solutions exhibit simplifications which are 
particularly useful in examining non-equilibrium effects. However, it is an 
inherent drawback of these limiting solutions that they are in a sense indeter- 
minate, due to the loss of the initial conditions governing the flow which, of 
course, cannot be applied. The analysis of this section will be concerned with 
inviscid spherically and cylindrically symmetric flows, the similarity between 
the two geometries makes it convenient to consider both cases simultaneously. 
Large distance expansions of the thermodynamic variables will be generated 
and the corresponding zeroth-order terms evaluated. 

The inviscid equations of motion for the problem can be written, 

p = nT, I 
where the relation p = n y  has been used to eliminate pressure from the momen- 
tum equation, y is the ratio of specific heats and c is the dimension index, 
u = 1 for cylindrical flow and 2 for spherical flow. The variables have been 
non-dimensionalized 

n = -  n‘ u = -  U’ r Z z ,  r’ t=t2,/ 
n;’ a; , 

RT’ (2.2) p = -  P‘ T = -  
cn;. ’ GnAy-1’ 
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where n; and a; are the number density and sound speed at  r = L, t = 0. L is 
a characteristic radius at  which the flow is in a continuum state, R is the gas 
constant and c is the constant occurring in the relation p = cny, the primes 
referring to dimensional variables. T, p ,  n and u are therefore the non-dimensional 
temperature, pressure, density and mean gas velocity. 

A new variable $, the particle path function, is defined by 

and 

nrg= 

Rewriting (2.1) in variables r and $, we have 

Because of the dearth of exact analytical solutions for flows with spherical 
and cylindrical symmetry, the attention will turn to approximate solutions. In  
expanding flows of this type, density is a decreasing function of radial distance 
for constant particle path function $. Consequently the density term in the 
momentum equation becomes negligible as r -+ a, $ fixed. This has been pointed 
out many times previously and has been termed the ‘inertia dominated’ region 
of the flow. If the terms involving density in (2.4b) are neglected then u = u($) 
and, from the continuity equation, implies a density variation 

where B($) is an arbitrary function of integration. It can be seen that the ex- 
pression for density reduces to the asymptotic steady state solution when 
auld$ + 0, while for duld$ and B of order unity 

for large r,  and is mathematically equivalent to the expansion of a fixed mass of 
gas (Freeman & Grundy 1968; Grundy & Thomas 1969). However, when 
(r/B) duld$ is of order unity, r large, we have a region of the flow field in which 
neither approximation is valid. As far as this paper is concerned, for flows with 
spherical symmetry, this is the region of interest for it is through this region that 
the steady state is approached. 

The aim, therefore, is to construct a perturbation scheme based upon the 
solution (2.5) which is asymptotically valid for large r,  @ fixed. However, we 
must be prepared to incorporate in our expansion scheme the possibility of an 

34-2 
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approach to the steady state when (r/B)du/d$- is of order one. In  view of this 
the following iteration scheme for the inviscid solution as r -+ co is proposed : 

nrr+l = No(r, $) + r-aNl(r, $) + . . ., 
u = uo($) + r a u l ( r ,  $) + . . . , 

It will be assumed that these expansions exist throughout the region of interest. 
However, this will not necessarily be so near the inviscid zero density front where 
n -+ 0. The expansions (2.7) are inserted into (2.4) giving 

(2.7) 1 

I 

+ O(r-a) = 0.) 
On examination of (2.8b) we conclude that 

a = (a+ 1) (7- 1). 

To zeroth order in T - ~ ,  ( 2 . 8 ~ ~ )  is 

giving 

ano au 

ar a$ 
u,,r - + N i J - u o N o  = 0, 

(2.9) 

(2.10) 

where B($) is an arbitrary function of integration. Using the isentropic and 
perfect gas relations the corresponding terms for temperature and pressure are 

and 
(2.11 a, b )  

where the thermodynamic variables have been expanded as 

Higher order terms in the asymptotic solutions can be obtained in a systematic 
manner. In particular, from (2.8b) using the above expression for No, we have 

Integration of this expression in closed form is not possible except in a few special 
cases. Fortunately one of these is the case a = 2, y = 9, i.e. the spherically sym- 
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metric flow of a monatomic gas. For these values of (r and y (2.13) can be 
integrated to give 

where 

the primes denoting differentiation with respect to $ only, and L($) is an arbi- 
trary function of integration. In  the preliminary discussion concerning the 
motivation for these expansions three cases were mentioned. First the steady 
limit duo/d$ + 0, secondly, (r/B) du,/d$ = O( 1)) r large and thirdly du,/d$ and 
B of order unity, r large. The general expansion scheme we have adopted includes 
all these cases; the r variation within the coefficients of rba has been retained in 
order to accommodate the second possibility. The arbitrary function L($) in 
the expression for u1 is evaluated by examining the behaviour of u1 in the third 
limit. In  particular L(+) is chosen so as to eliminate all the terms which become 
large in this case; this is achieved by the choice 

(2.15) 

Consequently the expression for u1 can be written 

We now return to the case ( r /B )du , /d$  = O ( l ) ,  r large. For the spherically 
symmetric expansion of a monatomic gas the expansion for u can be written 

It is clear that u(r ,  $) has been expanded for rB4 large with (r /B)  u; fixed and 
of order unity. The remaining $ dependence in the expansion is O( 1). In  a similar 
manner it is possible to determine higher order terms in the expansions of density, 
temperature and pressure. However, this will not be done, the result for u is 
thought sufficient to indicate their behaviour. 

The indeterminate nature of the asymptotic solution is quite apparent and, 
as observed above, is not unexpected. Both the arbitrary function B(+) and 
the limiting gas velocity uo($) are determined by the full inviscid solution. It is 
therefore unavoidable that the dependence on the initial conditions is lost. 
Nevertheless, although the exact role played by the initial conditions is not 
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known, they can only enter through their dependence on the functions B($) 

For the purposes of the present work several assumptions will be made 
regarding the structure of the flow field for large r. Perhaps the simplest picture 
will be that representing the particle path lines, which, to this order, coincide 
with the characteristic directions. The variation of uo and B are taken so that the 
resulting particle line structure is as shown in figure 1, where the origin has been 

and uo(+). 

t 

FIGURE 1. Schematic representation of far field particle path line structure. 

chosen so that the figure represents the flow for Iarge r .  By virtue of the fact that 
uo = uo(+), the particle path lines must be straight. In  addition it is assumed 
that uo decreases as we move away from the front for constant r until the steady 
state is reached, where the particle path lines become parallel. The limit B + 0 
corresponds to the purely unsteady flow of a fixed mass of gas and consequently 
it is apparent that this occurs as the front of the expansion is approached, due 
to the fact that this part of the flow field will be largely unaffected by the re- 
mainder of the gas. On the other hand as the steady state region is approached 
uo -+ constant and the function B(@) will also become independent of the particle 
path line. 

Bearing in mind these considerations several quantitative remarks can be 
made about the far field flow structure. The particle path lines can be represented 
in parametric form for large T by the system 

r = u o ( W - d @ ) }  = uo{t-g(uo)I. (2.18) 

For each +this defines a straight line with slope uo($) and an intercept g ( @ )  on 
the t axis. Differentiating this with respect to r at constant t we have 
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For r large and (r /B)  duo/d$ = O(l),  

Now $ = $(uo) to this degree of approximation and hence 

Equating the two expressions for (au,/i?r), we have 

ds B($) = -u  -. 
O 

(2.19) 

These expressions will be utilized when the example of 0 4 is considered. 

3. The Boltzmann equation for spherical flow 
3.1. The near equilibrium solution of the Boltzmann equation 

The realization that the inviscid solution is an asymptotic approximation to the 
full solution of the Boltzmann equation leads at once to the question as to whether 
approximation is uniform. It is with this question that this section is 
concerned. 

Boltzmann’s equation for unsteady flow with spherical symmetry can be 
written 

The right-hand side expresses the change in the distribution function due to 
collisions and can be written (Chapman Q Cowling 1960) in the usual notations 

(3.2) Ma = j . . .I (f; f; -fl fi) ~ 5 2 ~ ~ 2 ~ c 2 ~ 1 2 ~ k .  

The variables in (3.1) have been non-dimensionalized as in $2,  and in addition 
the non-dimensional peculiar molecular velocities 

are respectively in the radial and transverse directions. 7’ and 6‘ are the molecular 
velocities in the 0 and q5 directions. The parameter A is proportional to the 
inverse source Knudsen number and is assumed large, compatible with near con- 
tinuum conditions at r = L, t = 0. Re-written in the particle path variables, 
(3.1) becomes 
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where the density N is defined by 

N = 2gJom Sm rfd t ,  d r ,  
--OD 

and u is the gas velocity. 

(3.5) 

- 
The Chapman-Enskog solution to the Boltzmann equation can be regarded 

as a near equilibrium expansion in powers of A-l for the distribution function f. 
This can be written for the present problem, 

2 k 4  1 aT 
f = fo [ 1 - A-1 [ (3 nTt A,(%) (I + 

where %' = (g; + r2)/2T. The functionf, is the Maxwellian distribution given by 

The function A?(%?), the tensor Bl(%?) and the vector-tensor product notation 
are defined in Chapman & Cowling (1960). The thermodynamic variables are 
now expanded as 

4 T = T ~ + A - ~ T ~ + . . .  

N = R,+A-lR,+ ... 
u = &+A-lK+ ...) 
+ = $o+A-l$l+....) 

T ~ ,  R,, V, and $, are just the inviscid thermodynamic variables and particle path 
function respectively. The asymptotic behaviour of the near equilibrium 
expansion can be investigated using the inviscid solution developed in the 
previous section. By substituting the expansions (3.8) into the Chapman- 
Enskog solution the behaviour of the second term in equation (3.6) can be 
examined for large r .  The assumption of Maxwell molecules enables this second 
term to be explicitly evaluated. This procedure gives 

where a, and b, are constants evaluated in Chapman & Cowling (1960). B($.,) is 
the function defined in § 2, Vr = <1/(270): and primes denote differentiation with 
respect to $,. For the scaled velocities V,., %, etc., remaining fixed, it is apparent 
that the near equilibrium expansion will break down when 

r = 0 ( 4 ~ ( $ 0 ) ) *  (3.10) 

The location of the region of non-uniformity therefore depends on the parameter 
A and also on the function B($,). Returning briefly to the inviscid solution we 

YB($O) 
define a new variable 

rl. = - 
A '  

(3.11) 
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In  terms of this new variable (2.10) and (2.11) become for (T = 2 and y = C, 

(3.12) 

As noted earlier in the paper (§ 2) the region of interest is now confined to 
(uAA/B2) = O( l), i.e. close to the steady flow limit. The case of uA/B2 of order one 
will be discussed later in 5 3.4. 

3.2. The outer solution 
It has been shown above that the inviscid solution breaks down when 

r = O(A/B(@O))’ 
and consequently equations (3.11) give the order of magnitude of the thermo- 
dynamic variables in this region. New outer variables are defined as 

rB NA2 
rl=A’ %=-- B ’  

together with the molecular velocities 

$ = c1(A2/B)* and x = I’(A2/B)4. 
Inserting this scaling into the Boltzmann equation (3.4) we have 

(3.13) 

where the terms involving A multiplied by a $ derivative are retained at  each 
approximation level in order to bring out the essential features of the flow when 
u&4/B2 = O(1). Taking the zeroth-order moment of (3.14) we have 

I hl au 2 a ~  A 2un, 

ar, lar ,  la$B2 rl 
u-+n -+n r --+- = 0, 

1 and the first $ moment is 

The following expansions are made in the outer region 

and 

(3.15) 

(3.16) 
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Equations (3.15) now give, neglecting terms O{(B/A2)%], 

Matching with the inner solution for fixed YP, gives, 

(3.17) 

(3.18) 

and 

u, = u, 

Yo = $0. 

The expansions for u and n are introduced into (3.14) and a new variable 

81 = r1 [$$I 
is defined. Neglecting terms O{(B/A2)+}, 

(3.19) 

(3.20) 

where J(Yo) = UAA/U,B2 and I, is the zeroth-order term in the expansion of 
the collision integral. Changing to the molecular velocity variables 

x1 = XS1, dl = + Sl),  (3.21) 

and putting y1 = (1 + s1)/sl we finally have 

-- y1 a ~ o + J ( Y o ) I o  = 0. 
Y l - l a Y l  

(3.22) 

The form of the collision integral, and in particular I,, has so far remained 
unspecified. In order to make any progress at obtaining a solution of (3.22) by 
present methods I, must be known, at  least sufficiently so that its moments must 
be expressible in terms of moments of the distribution function. In  previous 
work (Freeman 1967; Freeman & Grundy 1968; Freeman & Thomas 1969) it 
was found that, for the Maxwell molecule collision model, the collision integral 
simplified in such a way that integrals of I, over velocity space could be expressed 
in terms of moments of F,. Furthermore, it was also shown that, up to second- 
order moments, a more simplified collision model, namely the BGK model, would 
yield the same set of moment equations as the full Boltzmann equation for 
Maxwell molecules. As far as the present work is concerned the BGK model will 
be used to compute moments of the distribution function, the inference being 
that the moments obtained will be identical to those which would have been 
found using the full Maxwell molecule collision integral. 

For the BGK model I, = F*- 

where F* is the local Maxwellian distribution given by 

(3.23) 

(3.24) 
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and To is the local thermodynamic temperature given by 

r m  P m  

(3.25) 

Substituting for po and making the change of molecular velocity variable in 
(3.24), (3.22) becomes 

The solution of (3.26) for Po can be written 

where J = J(Y,,). It should be stressed at this point in the analysis that Yo plays 
the role of a parameter as far as the outer solution is concerned, considerably 
simplifying the flow structure. 

We now define the second-order moments 

I (3.29) 

andsubstituting for Fo from (3.28), integrating over velocity space ($1, xl), gives 

and 
(3.30) 

The relationship between these moments and the temperature can be found 
from the identity relating the diagonal elements of the stress tensor to density 
and temperature, namely 

where 

(3.31) 

Substituting for x”, and from (3.30) into (3.31) an integral equation for To can 
be obtained, The integrals which appear can be eliminated between the equations 
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at our disposal to give a second-order differential equation for the temperature 
To. This equation is reducible to the confluent hypergeometric equation 

where (3.32) 

w1= JY, 
and 2b = -(++J)cJ($J+J~+~).  

(In the equation defining P the negative sign will be taken.) The final solution 
for T, can be written 

To = D ( ~ ~ o ) ( J Y , ) B ( Y l - 1 ) 2 Y ; Q ~ * ( P , 2 P + ~ + J ;  J Y J ,  (3.33) 

where the Yy, function is the confluent hypergeometric function and D(Yo) is 
a constant of integration. The second confluent hypergeometric function, which 
is also a solution of (3.32), has been dismissed by virtue of its behaviour as 
y1 -+ 00, for fixed Yo, i.e. the inviscid limit. Now 

Jy, = (UOrl)-l + J 

and thus the inviscid limit, rl + 0, Y'", fixed, corresponds to Jy, -+ co. Taking 
this limit in (3.33) 

To N D(Yo)(yl- 1)2yTQ{1+O(rl)+...}. 

Matching with the inner solution, which can be written 

T' N (U, J ) S  (yl - 1)2 ylQ{ 1 + O((B/A2); j>, 

the function D(Y0) is determined as 

D(Yo) = (UoJ)Q. (3.34) 

To = U~J4+Py~~(yl -1)2Y,(P ,2P+g+J;  Jy,). (3.35) 

Thus the solution for To which matches with the inviscid solution, becomes 

The integrals occurring in equations (3.30) can be found in terms of To and its 
first derivatives with respect to y,, hence the second-order moments and x", 
can be determined. These are 

(3.36) 

3 = - U ~ ~ ~ J P + ~ y ~ + g { ( P - ~ ) Y * ( P ,  2P+++ J; Jy,) 

and z= - V;;.-~Ja+~~~y~~{yl'rEp,(P+ 1,2/3+$+J; Jy,) 

-PY1'If*(P+ 1,2P+$+J;  Jy,)} 

- (P+$)xF*(P,2P+++J; JY1)j. 

1 0  

The behaviour of the solution for rl + co, 'Yo fixed, can be found from the above 
solution. In particular for temperature, taking the limit rl -+ co and noting that 

then (3.37) 
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Thus for each Yo, To behaves like r ia  as r l + m  provided of course that 
J (  = UAA/UgB2) does not become zero. In  the case of the steady flow limit a 
different approach is necessary. 

3.3. The steady flow limit 

It was observed in $ 2  that the steady flow limit of the asymptotic inviscid solu- 
tion was associated with zch approaching zero. In  addition it was seen that the 
function B(Y) became constant. It will therefore be instructive to examine the 
outer solution for the second-order moments and the Boltzmann equation itself 
in this limit. It will be recalled that the approximation procedure followed in 
the outer region was intended to retain the essential behaviour of the solution 
as the steady limit was approached. The terms involving a $ derivative and the 
Kctor A were therefore retained. As noted previously 

thus for fixed r1 and J + 0, Jy, N r;l. From the second of equations (3.32) 
/7 approaches -$ as J --f 0, and so 

To = U p r * ( - + ,  -1;  l/U0r1)+O(J), (3.38) 

as the steady state is approached. 
The remaining second-order moments must be treated with more caution. 

First, as J - t  0, the scaled molecular velocities x1 and q51 must be redefined. Now, 

and 

Thus we define 

and 

x l=  XS1 = xJr1Uo 
$1 = + + O ( J ) .  

$52 x2 = = $ 9  

(3.39) 

as the appropriate mc-xular velocities, noting that the vwcity q52 is not now 
scaled with any spatial co-ordinate. Furthermore, it is apparent that the second- 
order moment must be redefined as 

and 

We conclude that x", and 2 are the second-order moments for the steady 
spherically symmetric flow of a monatomic gas into vacuo for Maxwell molecules. 
To see this we return to equation (3.36) and take the limit J -+ 0, then 

$;= (uo J)-2pl = UQ 0{3y*(-$,  - 1; l/Uori)- (2/uori)y*(-$,  0; 1/uor1)}, 

x ; = ( U , J ) - ~ ~ =  3Ut~2,{Y,( -$,- 1; 1/U~r~)+(2/3Uorl )YP, ( -$ ,0;  l/Uorl)}. 
(3.41) 

These expressions for the second-order moments, including temperature, are 
equivalent to those obtained using the steady flow model (Freeman 1967; 
Edwards & Cheng 1966; Hamel & Willis 1966). 

- 

F - 
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The Boltzmann equation itself can be shown to reduce to its steady counter- 
part in the limit J -+ 0. Equation (3.22) becomes in the new velocity space 

(3.42) 

3.4. The case Uh/B2 of 0 ( 1 )  

In  the previous section the approach to the steady-state solution for the spheri- 
cally symmetric flow has been discussed and explicit solutions for temperature 
and the other second-order moments have been obtained. In  that solution we 
make the assumption UhA/B2 = O(l), which marks out the transition region 
spanning the unsteady and steady states. In  this section of the paper some 
brief comments are made concerning the region of the flow where UhlB2 is order 
unity. In  order to do this the results of an earlier paper (Grundy & Thomas 1969) 
will be recalled which dealt with the spherically symmetric expansion of a fixed 
mass of gas into vacuum, which in the present context corresponds to B ( Y o )  --f 0, 
u; of O(1). 

For B($) -+ 0, the resulting particle path structure for large P is that of a 
centred wave with uo($) varying for different lines. For this type of flow with 
spherical symmetry, 

uo uo(3L-1, ) 

and 

(3.43) 

It was shown by Grundy & Thomas that with this density variation the Max- 
wellian distribution function was a uniform approximation to the solution of 
the Boltzmann equation for large r,  @ fixed. However, the near equilibrium 
expansion is not uniformly valid but has to be replaced by a different outer 
expansion, valid when r = O(A&), $ = $(r/ t )  = O ( l ) ,  but in both the outer and 
inner expansions for the distribution function the Maxwellian distribution was 
the leading term. If in the present problem U;/B2 is order unity, then from (2.10) 
and (2.11) the inviscid thermodynamic variables can be written for large r as 

u = u0($) + O(r-2),  \ 
(3.44) 

These solutions have the same mathematical structure as relations (3.43) for 
the expansion of a fixed mass of gas, and it is conjectured that in this case a 
similar non-equilibrium analysis would apply but with a considerable complexity 
arising in the higher order terms. This would mean that when r = O(A4) and 
$ fixed such that uJB2 is O(l) ,  the leading term of an asymptotic approximation 
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to the solution of the Boltzmann equation would be the Maxwellian distribution 
given by 

(3.45) 

where t12 is the peculiar molecular velocity relative to the mean gas velocity 
uo($) and r2, tl, and rz are order one variables in the outer region r = O(A&), 
$ fixed. 

Taking the limit UhA/B2 -+ co in (3.35) for T, gives 

(3.46) 

and provides matching with the solution for temperature in the region 

UA/B2 = O(1). 

4. Illustration of theory 
In this section of the paper specitlc variations of uo and B will be postulated 

and the resulting flow field will be computed. The choice of uo and B must comply 
with the qualitative and quantitative observations of 5 2. Treating r and Yo aa 
the independent variables we put Y* = T - Yo where T -+ co, T being the total 
mass of gas available for the expansion. Thus Y * -+ 0 at the front of the expansion 
and Y* + 00 as the steady state is approached. We take 

duo duo k,k2 
giving ~ - - -~ - k, ( l+  k, +Y*) 

1 +Y* dYo dY* - (l+Y*),’ 
uo = 

and 
ak,( 1 + k, +Y*) Y* 

(1 +Y*)2 
B =  

The first choice has been made so that as Y* -f 0,  uo -+ k,( 1 + k,) and as Y*  + 00, 

uo + k,. The behaviour of uo as Y* -+ 0 is highly artificial as it is not expected 
that our expansion procedure is valid there. However, the example constructed 
will serve our primary purpose of illustrating the approach to the steady state 
through the transition region. The value of B is chosen so that as Y * + O ,  
B -+ 0 and as Y* + 00, B + constant. 

The solution developed in Q 3 applied when uJB2 = UJB2 = O(A-l). In  this 
example this implies that Y* = O(A*/a), and, writing Yf = (a/Ah)Y* it is 
now assumed that YT is of order one. In  this limit we have 

and B = ~k,+O(aA-h).  

From (2.19) 
dg aY* 

dY* - -*’ 
-- 

and hence g = AtY1* +O(l) .  
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Thus the particle path lines are given by 

i.e. 

a a 
rl = k t - - k l Y *  

YF = !!! { k l t : - r l ] .  

l A  1B’ 

ak1 
(4.3) 

The parameters occurring in the outer solution can now be found to a zeroth- 
order approximation in &-*, these are given by 

and in addition, 
E2, rp 

y1= l+- 
k2 r1 

r1 

FIGURE 2. Computed variation of temperature (To) with scaled radial 
co-ordinate (TJ for different particle path lines. 

With these values the solution for temperature can be written, 

For the purposes of computation the values k, = k, = 1 were chosen. With 
these particular values To was calculated for different values of the scaled particle 
path line function, Y:- Figure 2 gives a graphical representation of the results, 
for convenience log To is plotted against r,. Yf = oc, corresponds to pure steady 
flow which results in a constant frozen temperature at  infinity. For finite values 
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of YT, we have a gradual breakaway from the 'freezing' type behaviour, and, 
from (3.37), the asymptotic variation of temperature for each YT as r1 -+ co is 

Tor: = '3!T~-z~Y&?, 2/3++sJ;  J)+O(l /r l ) ,  given by 

which is an augmented inviscid inverse square behaviour. An indication of the 
way in which the transition from the inviscid behaviour (r --f 0) to the final 
asymptotic variation ( r  + 00) occurs, is shown in figure 3. 

0 -  
fi- 
1 - $? 

- 1  - 

I I I I I I 
1 2 3 4 5 6 

-2' 

r1 

FIGURE 3. Illustration of the departure of temperature (To) from the curves 
predicted by inviscid theory for different values of Y:. --- , inviscid flow. 

5. Conclusions 
The unsteady expansion of a monatomic gas into vacuum has been considered 

for spherical symmetry using the Maxwell molecule collision model. A solution of 
the inviscid equations of motion for large distances from the origin has been 
constructed for both spherical and cylindrical symmetry and has similar formu- 
lations for both geometries. In order to obtain these solutions the particle path 
function is employed, the major simplification being that the asymptotic velocity 
becomes solely dependent on this variable. The asymptotic solutions have the 
property, hitherto not discussed in the context of non-equilibrium expanding 
flows, that a steady state may be set up in some region of the flow field. 

Confining the attention to flows with spherical symmetry the inviscid solution 
is treated as the zeroth-order term in an asymptotic expansion in powers of the 
inverse reference Knudsen number which is assumed small, and the behaviour 
of this expansion is discussed for large r. Three distinct regions of the flow field 
are revealed in the analysis. First, one in which the flow is mathematically 
equivalent to that of a fixed mass of gas considered by Grundy & Thomas (1969) 
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in an earlier paper. Secondly, the region of prime interest, in which there is a 
transition between the fist region and the steady state where the rate of change 
of the asymptotic velocity with particle path function is small. In  this manner 
we approach the third distinct region; the steady state. Because of the generality 
of the method, an example, albeit of a somewhat artificial nature, is constructed 
in order to illustrate the essential properties of the solution in the second and 
third regions enumerated above. 

Needless to say no attempt has been made to introduce molecular interactions 
other than that for Maxwell molecules. Mathematically, as far as the Boltzmann 
equation is concerned, the difficulties are immense. Even the moment equations 
associated with model equations such as the BGK type, appear to possess 
non-linear properties which make any analytic progress difficult. 

One final point should be made concerning the flow near the zero density 
front predicted by the inviscid solution. AS pointed out by Freeman & Grundy 
(1968) the present approximation technique does not result in any essential 
simplification of the Boltzmann equation in these regions. It is to be expected 
that similar difficulties would be encountered in the problems considered in this 
paper, and consequently no attempt a t  an analysis of the flow is made near the 
inviscid front. 

A similar non-equilibrium analysis to the one followed in this paper can be 
pursued for the cylindrically symmetric case. However, the results obtained are 
basically different from those for spherical flow and will be dealt with in a later 
paper. 
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